Here's the basic set of imports and data reading functionality that we established in the Basic Time Series Plotting notebook.
In [ ]:
import pandas as pd
import matplotlib.pyplot as plt
from matplotlib.dates import DateFormatter, DayLocator
from siphon.simplewebservice.ndbc import NDBC
%matplotlib inline
In [ ]:
def format_varname(varname):
"""Format the variable name nicely for titles and labels."""
parts = varname.split('_')
title = parts[0].title()
label = varname.replace('_', ' ').title()
return title, label
In [ ]:
def read_buoy_data(buoy, days=7):
# Read in some data
df = NDBC.realtime_observations(buoy)
# Trim to the last 7 days
df = df[df['time'] > (pd.Timestamp.utcnow() - pd.Timedelta(days=days))]
return df
When we left off last time, we had created dictionaries that stored line colors and plot properties in a key value pair. To further simplify things, we can actually pass a dictionary of arguements to the plot call. Enter the dictionary of dictionaries. Each key has a value that is a dictionary itself with it's key value pairs being the arguements to each plot call. Notice that different variables can have different arguements!
In [ ]:
df = read_buoy_data('42039')
In [ ]:
# Dictionary of plotting parameters by variable name
styles = {'wind_speed': dict(color='tab:orange'),
'wind_gust': dict(color='tab:olive', linestyle='None', marker='o', markersize=2),
'pressure': dict(color='black')}
plot_variables = [['wind_speed', 'wind_gust'], ['pressure']]
In [ ]:
fig, axes = plt.subplots(1, len(plot_variables), sharex=True, figsize=(14, 5))
for col, var_names in enumerate(plot_variables):
ax = axes[col]
for var_name in var_names:
title, label = format_varname(var_name)
ax.plot(df.time, df[var_name], **styles[var_name])
ax.set_ylabel(title)
ax.set_title('Buoy 42039 {}'.format(title))
ax.grid(True)
ax.set_xlabel('Time')
ax.xaxis.set_major_formatter(DateFormatter('%m/%d'))
ax.xaxis.set_major_locator(DayLocator())
We can even use multiple dictionaries to define styles for types of observations and then specific observation properties such as levels, sources, etc. One common use case of this would be plotting all temperature data as red, but with different linestyles for an isobaric level and the surface.
In [ ]:
type_styles = {'Temperature': dict(color='red', marker='o'),
'Relative humidity': dict(color='green', marker='s')}
level_styles = {'isobaric': dict(linestyle='-', linewidth=2),
'surface': dict(linestyle=':', linewidth=3)}
In [ ]:
my_style = type_styles['Temperature']
print(my_style)
In [ ]:
my_style.update(level_styles['isobaric'])
print(my_style)
If we look back at the original entry in type_styles
we see it was updated too! That may not be the expected or even the desired behavior.
In [ ]:
type_styles['Temperature']
We can use the copy
method to make a copy of the element and avoid update the original.
In [ ]:
type_styles = {'Temperature': dict(color='red', marker='o'),
'Relative humidity': dict(color='green', marker='s')}
level_styles = {'isobaric': dict(linestyle='-', linewidth=2),
'surface': dict(linestyle=':', linewidth=3)}
my_style = type_styles['Temperature'].copy() # Avoids altering the original entry
my_style.update(level_styles['isobaric'])
print(my_style)
In [ ]:
type_styles['Temperature']
Since we don't have data from different levels, we'll work with wind measurements and pressure data. Our format_varname
function returns a title and full variable name label.
In [ ]:
# Your code goes here (modify the skeleton below)
type_styles = {}
variable_styles = {}
fig, axes = plt.subplots(1, len(plot_variables), sharex=True, figsize=(14, 5))
for col, var_names in enumerate(plot_variables):
ax = axes[col]
for var_name in var_names:
title, label = format_varname(var_name)
ax.plot(df.time, df[var_name], **styles[var_name])
ax.set_ylabel(title)
ax.set_title('Buoy 42039 {}'.format(title))
ax.grid(True)
ax.set_xlabel('Time')
ax.xaxis.set_major_formatter(DateFormatter('%m/%d'))
ax.xaxis.set_major_locator(DayLocator())
In [ ]:
# %load solutions/dict_args.py
There are times where we might want to apply a certain amount of pre-processing to the data before they are plotted. Maybe we want to do a unit conversion, scale the data, or filter it. We can create a dictionary in which functions are the values and variable names are the keys.
For example, let's define a function that uses the running median to filter the wind data (effectively a low-pass). We'll also make a do nothing function for data we don't want to alter.
In [ ]:
from scipy.signal import medfilt
def filter_wind(a):
return medfilt(a, 7)
def donothing(a):
return a
In [ ]:
converters = {'Wind': filter_wind, 'Pressure': donothing}
In [ ]:
type_styles = {'Pressure': dict(color='black'),
'Wind': dict(linestyle='-')}
variable_styles = {'pressure': dict(),
'wind_speed': dict(color='tab:orange', linewidth=2),
'wind_gust': dict(color='tab:olive', linewidth=0.5)}
fig, axes = plt.subplots(1, len(plot_variables), sharex=True, figsize=(14, 5))
for col, var_names in enumerate(plot_variables):
ax = axes[col]
for var_name in var_names:
title, label = format_varname(var_name)
# Apply our pre-processing
var_data = converters[title](df[var_name])
style = type_styles[title].copy() # So the next line doesn't change the original
style.update(variable_styles[var_name])
ax.plot(df.time, var_data, **style)
ax.set_ylabel(title)
ax.set_title('Buoy 42039 {}'.format(title))
ax.grid(True)
ax.set_xlabel('Time')
ax.xaxis.set_major_formatter(DateFormatter('%m/%d'))
ax.xaxis.set_major_locator(DayLocator())
In [ ]:
# Your code goes here (modify the code below)
converters = {'Wind': filter_wind, 'Pressure': donothing}
type_styles = {'Pressure': dict(color='black'),
'Wind': dict(linestyle='-')}
variable_styles = {'pressure': dict(),
'wind_speed': dict(color='tab:orange', linewidth=2),
'wind_gust': dict(color='tab:olive', linewidth=0.5)}
fig, axes = plt.subplots(1, len(plot_variables), sharex=True, figsize=(14, 5))
for col, var_names in enumerate(plot_variables):
ax = axes[col]
for var_name in var_names:
title, label = format_varname(var_name)
# Apply our pre-processing
var_data = converters[title](df[var_name])
style = type_styles[title].copy() # So the next line doesn't change the original
style.update(variable_styles[var_name])
ax.plot(df.time, var_data, **style)
ax.set_ylabel(title)
ax.set_title('Buoy 42039 {}'.format(title))
ax.grid(True)
ax.set_xlabel('Time')
ax.xaxis.set_major_formatter(DateFormatter('%m/%d'))
ax.xaxis.set_major_locator(DayLocator())
In [ ]:
# %load solutions/function_application.py
We can now use the techniques we've seen before to make a plot of multiple buoys in a single figure.
In [ ]:
buoys = ['42039', '42022']
In [ ]:
type_styles = {'Pressure': dict(color='black'),
'Wind': dict(linestyle='-')}
variable_styles = {'pressure': dict(),
'wind_speed': dict(color='tab:orange', linewidth=2),
'wind_gust': dict(color='tab:olive', linewidth=0.5)}
fig, axes = plt.subplots(len(buoys), len(plot_variables), sharex=True, figsize=(14, 10))
for row, buoy in enumerate(buoys):
df = read_buoy_data(buoy)
for col, var_names in enumerate(plot_variables):
ax = axes[row, col]
for var_name in var_names:
title, label = format_varname(var_name)
style = type_styles[title].copy() # So the next line doesn't change the original
style.update(variable_styles[var_name])
ax.plot(df.time, df[var_name], **style)
ax.set_ylabel(title)
ax.set_title('Buoy {} {}'.format(buoy, title))
ax.grid(True)
ax.set_xlabel('Time')
ax.xaxis.set_major_formatter(DateFormatter('%m/%d'))
ax.xaxis.set_major_locator(DayLocator())
In [ ]:
# Your code goes here
In [ ]:
# %load solutions/final.py